Параллельный перенос вектора. Критика

  • Параллельный перенос вектора. Критика | Петр Путенихин

    Петр Путенихин Параллельный перенос вектора. Критика

    Приобрести произведение напрямую у автора на Цифровой Витрине. Скачать бесплатно.

Электронная книга
  Аннотация     
  11


Считается, что в искривленном пространстве параллельный перенос вектора приводит к изменению его направления. Это утверждение в общем случае ошибочно. It is believed that in a curved space the parallel transfer of a vector leads to a change in its direction. This assertion in the general case is erroneous.


ВНИМАНИЕ
Вы приобретаете произведение напрямую у автора. Без наценок и комиссий магазина. Данная Витрина является персональным магазином автора. Подробнее...

Читать бесплатно «Параллельный перенос вектора. Критика» ознакомительный фрагмент книги

Параллельный перенос вектора. Критика

Практически во всех источниках, учебниках, рассматривающих вопрос определения кривизны собственного пространства внутренним наблюдателем, можно встретить утверждение, что он способен сделать это без привлечения понятия пространства большей размерности:

"... внутренняя кривизна пространства-времени, т. е. кри­визна, при определении которой не только не используется по­гружение в какое-либо гипотетическое плоское многообразие более высокой размерности, но даже не допускается мысли о возможности такого погружения" [8, т.1, с.411].

В качестве одного из способов такого определения чаще всего рассматривается явление поворота вектора при его параллельном переносе по замкнутому контуру:

"Кривизна многообразия сама по себе выражается через изменение направления вектора, возникающее при параллельном переносе вектора по небольшому замкнутому контуру. Изменение направления вектора зависит от исходного направления вектора, а также от ориентации двумерной поверхности, в которой расположен этот замкнутый контур; при заданной ориентации изменение направления вектора пропорционально площади, охватываемой замкнутым контуром. Следовательно, численное значение кривизны многообразия можно выразить через изменение направления вектора (в градусах) на единицу площади, охватываемой замкнутым контуром, по которому совершается обход" [1, с.82].

Известны и более формализованные описания таких процессов, например, в терминах тензоров:

"... параллельный перенос произвольного вектора (тензора) по замкнутому контуру. Параллельно перенося произвольный тензор … из произвольной точки А в точку D вдоль различных сторон параллелограмма … можно убедиться в том, что тензор Римана-Кристоффеля определяет разность компонент тензоров, перенесенных из одной точки в другую (близкую) двумя разными путями (уравнение) ..." [4, с.67]

Разностью компонент тензора в данном случае и обозначают изменение направления вектора при таком параллельном переносе. Примерно такой же вывод следует из доказательств еще одного автора:

"При произвольном переносе … вектор получает приращение ... Выведем формулу ... Таким образом, при параллельном переносе вектор ... получает  приращение ..." [5, с.51]

Эти выводы относятся к криволинейным пространствам, поскольку в декартовой и в евклидовой системах координат компоненты векторов при параллельном переносе не изменяются и результирующий вектор после прохождения любого замкнутого контура совпадет с исходным вектором, причем система координат в общем случае, как считается, может быть и искривленной. Но в искривленном пространстве:

"... результирующий вектор a*i, вообще говоря, будет отличен от исходного вектора ai, причем разность a*i – a*i зависит от выбора замкнутой кривой ... это единственное существенное различие между плоским и искривленным пространствами" [7, с.231].

Именно такое поведение вектора при параллельном переносе, как правило, и используется в качестве определения понятия кривизны пространства:

"... пространство называется искривленным, если результат параллельного переноса вектора из одной точки в другую зависит от выбора пути, по которому производится перенос" [1, с.84].

При параллельном переносе всегда принимается, что длина вектора остается неизменной, поэтому результатом переноса может быть только поворот вектора, но не его растяжение или сжатие. Поскольку пути могут быть разными, то и результирующий поворот так же может быть разным.

Выводы

Из приведённых доводов прямо следует: параллельный перенос вектора в рамках пространства не позволяет получить информацию о кривизне пространства, в частности, на поверхности сферы. Несложно обнаружить, что подобное несоответствие возникает и на поверхности тора, и догадаться, что это справедливо в отношении любой искривленной поверхности. Но как же тогда следует относиться к строгим аналитическим выкладкам и доказательствам возможности этого? Ответ содержится в приведенном анализе. Как в аналитических выкладках, так и в графических примерах при параллельном переносе вектор не возвращен в исходное положение, поэтому и сохраняет параметры последнего участка траектории.

Кроме того, возникает весьма серьёзная проблема. Если тензорный формализм приводит к такому результату, изменению направления вектора при его переносе в криволинейном пространства, то неизбежно следует один из двух выводов. Если теория даёт некий вывод, не соответствующий реальному положению вещей, то такая теория не может быть верной. Даже если она тензорная. С другой стороны, если считать её всё-таки верной, безупречной, то такое расхождение с реальными фактами может быть следствием некорректного использования теории.